
Federated Online Adaptation for Deep Stereo

Supplementary Material

This document supplements the CVPR 2024 paper “Federated Online Adaptation for Deep Stereo”. It provides additional

implementation details and deeper insights into the results reported in the main paper.

6. Implementation Details

6.1. MADNet 2 Architecture

MADNet 2 is implemented on top of MADNet [55]. Specifically, it is made of two, shared feature extractors and a set of five

shallow disparity decoders. These modules are assembled to implement coarse-to-fine processing, as shown in Fig. 5.

Figure 5. MADNet 2 architecture. Given a stereo pair, a set of multi-scale features is extracted by means of two feature extractors with

shared weights. Starting from the lowest resolution – i.e., 1

64
– correlation scores are computed and sampled by means of the all-pair

correlation module and lookup operator from [30]. Sampled scores and image features are processed by a disparity decoder, which predicts

an initial disparity map at 1

64
resolution. This latter is upsampled and used by the look operator working on the correlation volume at 1

32

resolution, then a second decoder predicts a refined disparity map at 1

32
resolution. This process is repeated up to 1

4
resolution. There, the

final prediction is bilinearly upsampled to the original resolution.

Feature Extractors. These sub-networks are implemented as a sequence of twelve 3×3 convolutional layers, each fol-

lowed by Leaky ReLU activations with α = 0.2. These layers have respectively [16, 16, 32, 32, 64, 64, 96, 96, 128, 128, 192,

192] output channels and [2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1] stride factors. Features extracted from layers having stride equal to

1 are respectively at 1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
32 , and 1

64 of the input resolution and are used to compute coarse-to-fine cost volumes.

All-pairs Correlation Volume [30]. Features obtained from the two extractors are used to build a pyramid of cost

volumes, by computing all-pairs correlation scores [30]. Given feature maps f ,g ∈ R
H×W×F , a 3D correlation volume can

be computed by computing the inner product between features on the same horizontal line:

Cijk =

X

h

fijh · gikh, C ∈ R
H×W×W (3)

Conversely to the correlation layer used originally in [55], this operation is not bound to a specific search range, thus allowing

the network to compute matching scores for all possible candidates along the epipolar line. As the correlation volume

produces C ∈ R
H×W×W , this makes the cost volume channels dimension dependent on the resolution of the input image.

However, by exploiting the lookup operator from RAFT-Stereo [30] we can sample a fixed number of correlation scores along

the channel dimension and build a fixed-size cost volume to be processed, subsequently, by a disparity decoder. Sampling is

performed in a 1D neighborhood with a radius 2, selecting H ×W × 5 correlation features.

Disparity Decoders. These modules process correlation scores sampled by the lookup operator, the features produced by

the feature extractor from the left image, and the disparity map estimated at the previous stage, in order to predict a refined

disparity map at the current resolution. Each decoder is made of five 3×3 convolutional layers, with stride 1 and [128, 96,

48, 32, 1] output channels. Any layer is followed by Leaky ReLU activations with α = 0.2, except the last one. Following

[35, 55], predicted disparity maps are scaled by a factor 1
20 .

Training. Following [55], we train MADNet2 with a weighted sum of L1 losses computed on each disparity map.

Specifically, the pixel-wise L1 between predicted and downsampled ground truth disparity is summed over the entire image.

The four terms are summed with weights [0.08, 0.02, 0.01, 0.005] from lower to higher resolution. We use Adam optimizer,

batch size 8, and an initial learning rate of 1e− 4, halved after 150 epochs. We use color and spatial augmentations from [2].

Adaptation. We use Adam optimizer and learning rate 1e− 5 when adapting MADNet 2 and any other model.
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6.2. Pre-trained Models and Proxy Labels

We now report which specific weights have been used for any stereo network involved in our experiments.

RAFT-Stereo [30], CREStereo [24] – We use pre-trained weights provided by [58], as i) they showed slightly better

generalization for RAFT-Stereo [30], and ii) official weights pre-trained on SceneFlow are not available for CREStereo [24].

IGEV-Stereo [63], UniMatch [65] – We use the pre-trained weights provided by the authors – respectively,

sceneflow.pth and gmstereo-scale2-regrefine3-resumeflowthings-sceneflow-f724fee6.pth.

Real-time models (TemporalStereo [72], HITNet [52], CoEX [3]) – As the weights available online proved poor gen-

eralization from synthetic to real images, we re-trained these three models from scratch on FlyingThings3D [35], using the

original losses presented in the respective papers, following the same training protocol and using the same hyper-parameters.

Proxy Labels. Disparity maps used for FULL++/MAD++ are obtained following [41], i.e., by running rSGM2 and then

post-processing the results with left-right consistency check and a speckle filter.

7. Additional Experiments

We now report some additional experiments not fitting the 8-page limit of the main paper.

7.1. MADNet vs MADNet 2

We start by discussing the results achieved by our improved version of the original MADNet [41, 55]. Tab. 6 shows the

error rates achieved by different flavors of MADNet without adaptation. Our PyTorch re-implementation already improves

over the original source code, with stronger data augmentation [58] further improving generalization from synthetic to real

images. Eventually, the all-pairs correlation volume allows to decimate the errors with respect to the original model.

City Residential Campus(×2) Road All

Model Impl. details
D1-all EPE D1-all EPE D1-all EPE D1-all EPE D1-all EPE

(%) (px) (%) (px) (%) (px) (%) (px) (%) (px)

MADNet

[41, 55] 37.42 9.96 37.04 11.34 51.98 11.94 47.45 15.71 38.84 11.68

ours (PyTorch) 28.26 4.61 26.10 4.79 34.68 5.05 34.27 6.25 27.82 4.96

+ augment. 11.51 1.75 9.25 1.63 10.63 1.88 15.47 1.90 10.53 1.69

MADNet 2 (ours) + cost volume 4.04 1.10 4.05 1.03 6.07 1.29 4.01 1.08 4.21 1.09

Table 6. MADNet [55] vs MADNet 2. Results on the City, Residential, Campus, and Road sequences from KITTI [17] as defined in [55].

7.2. Federated Adaptation – Listening Client on Low-Powered Hardware

All of the federated experiments carried out in the main paper are performed by running both active and listening clients on

3090 GPUs for simplicity. Accordingly, the listening client runs at a much faster inference speed with respect to the adapting

clients, and thus the relative frequency of the updates received from the server will be much lower.

This translates into a lower improvement achieved by the listening client with respect to what would happen in a real use-

case, i.e., when it runs on a low-powered platform and is not capable of adapting on its own. In such a case, its processing

speed would also be much lower, with a consequent increase of the relative frequency of updates it receives.

To confirm this hypothesis, we run an additional experiment on KITTI, by constraining the listening client to run at

lower speed (about 10 FPS). Tab. 7 recalls, on top (a), the results obtained in the main paper with our federated adaptation

framework (Tab. 2). At the bottom (b), we report the results achieved in this latter experiment. We can notice how the error

rates achieved on most sequences are lower when the listening client runs at a lower speed, confirming our hypothesis.

City Residential Campus(×2) Road

Model Adapt. mode
D1-all EPE D1-all EPE D1-all EPE D1-all EPE

(%) (px) (%) (px) (%) (px) (%) (px)

MADNet 2

FedFULL 1.42 0.89 1.22 0.80 3.93 1.14 1.12 0.80

FedMAD 1.48 0.90 1.29 0.81 4.05 1.17 1.16 0.82

FedFULL++ 1.38 0.94 1.12 0.81 3.45 1.10 1.11 0.85

FedMAD++ 1.46 0.95 1.20 0.83 3.55 1.11 1.19 0.87

(a) Listening Client on high-end hardware

MADNet 2

FedFULL 1.29 0.87 1.21 0.79 3.46 1.25 1.04 0.80

FedMAD 1.39 0.90 1.35 0.82 3.51 1.27 1.10 0.83

FedFULL++ 1.25 0.90 1.09 0.78 2.99 1.06 0.99 0.82

FedMAD++ 1.32 0.92 1.22 0.82 3.10 1.08 1.04 0.84

(b) Listening Client on low-powered hardware

Table 7. Federated Adaptation – Impact of speed by the listening client. Results on the City, Residential, Campus, and Road sequences

from KITTI [17]. Performance achieved by a listening client running either on (a) high-end hardware or (b) low-powered platforms.

2https://github.com/ivankreso/stereo-vision/tree/master/reconstruction/base/rSGM
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7.3. Impact of Randomness on Federated Adaptation

The asynchronous nature of our federated framework makes it susceptible to different, random factors, some of them even

out of our control. Indeed, while we can constrain some of these by fixing the random seed in our experiments – e.g., the

sequences sampled by the active clients, the blocks sampled by MAD and FedMAD heuristics, etc. – we cannot enforce the

very same concurrent behavior for the threads running independently in our experiments.

We measure the impact of these factors in Tabs. 8 to 10, respectively on KITTI, DrivingStereo, and DSEC datasets. Each

table reports two distinct experiments, consisting in (a) running our federated framework five times with different random

seeds, and (b) running it five times by fixing the very same seed. We report, for each sequence, the margin in terms of D1-all

and EPE between the maximum and the minimum measured over the five runs, with ↓ referring to margins lower than 0.01.

Starting from Tab. 8, we can notice how the fluctuations on D1-all are lower than 0.1 in most sequences, even when

changing the seed (a). The only exception is the Campus sequence which is, unsurprisingly, the shortest and hardest. When

fixing the random seed over multiple runs (b), we can still observe some lower fluctuations, confirming the influence of some

factors over which we have no control – such as threads scheduling, initialization, and concurrence to access resources.

The same trend can be observed on Tabs. 9 and 10. In particular, as the sequences from DrivingStereo and DSEC are

shorter and more challenging, the impact of randomness is slightly higher with respect to what observed on KITTI.

City Residential Campus(×2) Road

Model Adapt. mode
D1-all EPE D1-all EPE D1-all EPE D1-all EPE

(%) (px) (%) (px) (%) (px) (%) (px)

MADNet 2

FedFULL 0.02 0.01 0.01 0.01 0.38 0.04 0.04 0.03

FedMAD 0.02 0.01 0.02 0.01 0.51 0.09 0.05 0.03

FedFULL++ 0.05 0.02 0.02 0.01 0.17 0.03 0.05 0.02

FedMAD++ 0.07 0.02 0.04 0.02 0.26 0.06 0.04 0.02

(a) Different random seeds

MADNet 2

FedFULL ↓ ↓ ↓ ↓ 0.06 0.02 ↓ ↓

FedMAD 0.03 0.01 ↓ ↓ 0.15 0.06 0.01 0.01

FedFULL++ ↓ ↓ ↓ ↓ 0.01 ↓ 0.01 ↓

FedMAD++ 0.01 ↓ ↓ ↓ 0.21 0.04 0.03 0.01

(b) Same random seeds

Table 8. Federated Adaptation – Impact of randomness. Results on the City, Residential, Campus, and Road sequences from KITTI

[17]. We report the margin between min and max errors over five runs, either when fixing (a) different random seeds or (b) the same seed.

Rainy Cloudy Dusky

Model Adapt. mode
D1-all EPE D1-all EPE D1-all EPE

(%) (px) (%) (px) (%) (px)

MADNet 2

FedFULL 0.08 0.01 0.27 0.03 0.70 0.03

FedMAD 0.32 0.05 0.20 0.03 1.00 0.09

FedFULL++ 0.02 ↓ 0.11 0.08 0.65 0.08

FedMAD++ 0.32 0.07 0.19 0.18 0.79 0.09

(a) Different random seeds

MADNet 2

FedFULL 0.15 0.04 0.03 ↓ 0.16 0.02

FedMAD 0.35 0.07 0.15 0.01 0.83 0.04

FedFULL++ ↓ ↓ 0.01 0.01 0.01 ↓

FedMAD++ 0.05 0.02 0.06 0.02 0.19 0.01

(b) Same random seeds

Table 9. Federated Adaptation – Impact of randomness. Results on the Rainy, Dusky, and Cloudy sequences from DrivingStereo [67].

We report the margin between min and max errors over five runs, either when fixing (a) different random seeds or (b) the same seed.

Night#1 Night#2 Night#3 Night#4

Model Adapt. mode
D1-all EPE D1-all EPE D1-all EPE D1-all EPE

(%) (px) (%) (px) (%) (px) (%) (px)

MADNet 2

FedFULL 0.10 0.02 0.07 0.02 0.01 0.01 0.10 0.01

FedMAD 0.26 0.03 0.21 0.03 0.15 0.01 0.05 0.01

FedFULL++ 0.01 ↓ 0.01 ↓ ↓ ↓ 0.01 ↓

FedMAD++ 0.04 0.01 0.06 0.01 0.03 ↓ 0.06 0.01

(a) Different random seeds

MADNet 2

FedFULL 0.05 0.01 0.07 0.01 0.06 0.01 0.04 0.01

FedMAD 0.16 0.01 0.13 0.02 0.14 0.01 0.17 0.01

FedFULL++ 0.01 ↓ ↓ ↓ ↓ 0.01 ↓ ↓

FedMAD++ 0.05 0.01 0.06 0.01 0.03 ↓ 0.05 ↓

(b) Same random seeds

Table 10. Federated Adaptation – Impact of randomness. Results on the Night#1, Night#2, Night#3, and Night#4 sequences from DSEC

[14]. We report the margin between min and max errors over five runs, either when fixing (a) different random seeds or (b) the same seed.

3



7.4. Federated Adaptation with Other Real-Time Networks

In the main paper, we showcased in Tab. 3 how federated adaptation – and online adaptation, in general – can be implemented

with other, real-time networks such as TemporalStereo [72], HITNet [52] and CoEX [3], reporting results with photometric

loss [55] only due to the lack of space. For completeness, we complement those results here. Tab. 11 completes Tab. 3 with

the results achieved by using proxy labels [41] on the KITTI dataset, confirming what already discussed in the main paper.

City Residential Campus(×2) Road Data Traffic Runtime

Model Adapt. mode
D1-all EPE D1-all EPE D1-all EPE D1-all EPE To Server To Client 3090 AGX

(%) (px) (%) (px) (%) (px) (%) (px) (MB/s) (MB/s) (ms) (ms)

CoEX [3]

No Adapt. 2.57 1.04 2.51 0.96 3.97 1.25 2.98 1.02 - - 19 177

FULL++ 1.00 0.86 0.85 0.78 1.73 0.85 0.94 0.82 - - 75 1197

FedFULL++ 1.16 0.88 0.96 0.78 2.40 0.98 1.16 0.84 8.4 2.4 19 177

HITNet [52]

No Adapt. 1.99 1.00 2.15 0.93 3.11 1.06 2.07 0.95 - - 36 404

FULL++ 0.89 0.85 0.83 0.76 1.80 0.83 0.97 0.82 - - 105 1535

FedFULL++ 1.04 0.89 1.05 0.80 2.24 0.89 1.17 0.85 2.3 0.6 36 404

TemporalStereo [72]

No Adapt. 4.33 1.26 3.47 1.10 3.80 1.19 4.67 1.21 - - 42 7

FULL++ 1.04 0.86 0.90 0.77 1.86 0.85 0.88 0.81 - - 150 7

FedFULL++ 1.22 0.88 1.01 0.79 2.32 0.95 1.11 0.83 33.5 9.5 42 7

(b) Single-agent vs Federated Adaptation – proxy labels [41]

Table 11. Online adaptation by fast networks (TemporalStereo [72], HITNet [52], CoEX [3]) within a single domain – single agent

vs federated adaptation. Results on the City, Residential, Campus, and Road sequences from KITTI [17].

Furthermore, Tabs. 12 and 13 complete this evaluation by extending it to DrivingStereo [67] and DSEC [14] datasets. In

general, adapting any network through FULL/FULL++ often allows for improving their accuracy and achieving error rates

even lower compared to MADNet 2. Nonetheless, none of the three models can stand with this latter in efficiency.

Rainy Dusky Cloudy Data Traffic Runtime

Model Adapt. mode
D1-all EPE D1-all EPE D1-all EPE To Server To Client 3090 AGX

(%) (px) (%) (px) (%) (px) (MB/s) (MB/s) (ms) (ms)

CoEX [3]

No Adapt. 13.48 2.53 11.00 1.58 4.46 1.16 - - 16 130

FULL 8.33 1.81 9.11 1.41 4.91 1.19 - - 65 1278

FedFULL 10.70 2.30 8.32 1.32 4.06 1.09 10.2 3.4 16 130

HITNet [52]

No Adapt. 14.08 2.74 8.88 1.37 4.17 1.14 - - 29 311

FULL 10.42 2.00 9.12 1.36 5.56 1.22 - - 88 1720

FedFULL 10.05 2.00 6.20 1.15 4.16 1.09 3.3 1.1 29 311

TemporalStereo [72]

No Adapt. 18.53 3.94 13.61 1.80 6.02 1.31 - - 33 7

FULL 11.51 1.95 9.15 1.39 5.98 1.24 - - 140 7

FedFULL 13.86 3.06 7.81 1.32 4.30 1.06 43.7 14.5 33 7

(a) Single-agent vs Federated Adaptation – photometric loss [55]

CoEX [3]

No Adapt. 13.48 2.53 11.00 1.58 4.46 1.16 - - 16 130

FULL++ 9.96 2.48 4.80 1.05 3.34 1.14 - - 60 1192

FedFULL++ 8.52 1.77 6.18 1.15 2.78 0.93 11.4 3.8 16 130

HITNet [52]

No Adapt. 14.08 2.74 8.88 1.37 4.17 1.14 - - 29 311

FULL++ 10.27 2.33 3.62 0.96 4.99 1.59 - - 84 1623

FedFULL++ 8.00 1.79 3.57 0.94 3.57 1.06 3.7 1.2 29 311

TemporalStereo [72]

No Adapt. 18.53 3.94 13.61 1.80 6.02 1.31 - - 33 7

FULL++ 10.36 2.16 4.88 1.06 4.51 1.23 - - 130 7

FedFULL++ 12.94 2.88 6.49 1.20 3.82 1.00 47.8 10.9 33 7

(b) Single-agent vs Federated Adaptation – proxy labels [41]

Table 12. Online adaptation by fast networks (TemporalStereo [72], HITNet [52], CoEX [3]) on DrivingStereo [67] – single agent

vs federated adaptation. Results on the Rainy, Dusky and Cloudy sequences as selected in [41].

Night #1 Night #2 Night #3 Night #4 Data Traffic Runtime

Model Adapt. mode
D1-all EPE D1-all EPE D1-all EPE D1-all EPE To Server To Client 3090 AGX

(%) (px) (%) (px) (%) (px) (%) (px) (MB/s) (MB/s) (ms) (ms)

CoEX [3]

No Adapt. 6.26 1.72 10.81 1.87 8.60 1.64 8.31 1.53 - - 53 539

FULL 4.82 1.49 6.28 1.34 5.60 1.27 5.31 1.19 - - 225 2842

FedFULL 5.32 1.57 7.57 1.49 6.16 1.33 5.79 1.21 9.6 3.1 53 539

HITNet [52] Any Adapt. Out of Memory

TemporalStereo [72]

No Adapt. 7.17 1.68 10.22 1.92 8.66 1.62 8.40 1.49 - - 118 7

FULL 5.77 1.39 9.74 1.57 8.68 1.45 9.38 1.44 - - 425 7

FedFULL 5.27 1.42 7.19 1.50 6.46 1.32 6.46 1.24 41.3 13.7 118 7

(a) Single-agent vs Federated Adaptation – photometric loss [55]

CoEX [3]

No Adapt. 6.26 1.72 10.81 1.87 8.60 1.64 8.31 1.53 - - 53 539

FULL++ 4.06 1.20 5.79 1.28 4.96 1.19 4.93 1.14 - - 205 2776

FedFULL++ 4.92 1.39 7.01 1.41 5.65 1.28 5.45 1.19 10.9 3.5 53 539

HITNet [52] Any Adapt. Out of Memory

TemporalStereo [72]

No Adapt. 7.17 1.68 10.22 1.92 8.66 1.62 8.40 1.49 - - 118 7

FULL++ 4.90 1.25 6.95 1.36 5.89 1.25 5.67 1.18 - - 380 7

FedFULL++ 5.38 1.38 7.05 1.42 6.05 1.30 5.96 1.22 46.1 15.1 118 7

(d) Single-agent vs Federated Adaptation – proxy labels [41]

Table 13. Online adaptation by fast networks (TemporalStereo [72], HITNet [52], CoEX [3]) on DSEC [14] – single agent vs

federated adaptation. Results on the Night#1, Night#2, Night#3 and Night#4 sequences.

This becomes particularly evident on the AGX board: when adapting on DrivingStereo with FULL/FULL++ (Tab. 12),

CoEX and HITNet cannot reach 1 FPS, while MADNet 2 can still run at 2 FPS, or even faster with MAD/MAD++. Con-

sequently, leveraging federated adaptation is the only way for CoEX and HITNet to keep a decent frame rate, respectively

about 9 and 3 FPS. Yet, MADNet 2 maintains its supremacy by running at more than 20 FPS in the same setting.

On DSEC (Tab. 13), this gap becomes even larger, with CoEX not even running at 2 FPS and HITNet running out-of-

memory when trying to carry out adaptation, whereas MADNet still reaches nearly 10 FPS.
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8. Qualitative Results

We conclude with some qualitative examples of disparity maps predicted by the several models involved in our experiments.

Figs. 6 and 7 reports two examples respectively from the Road and Residential sequences of the KITTI dataset [17]. On

each, we report different disparity maps and the corresponding error maps (these latter are dilated to ease visualization). We

can appreciate how state-of-the-art models [24, 30, 63, 65] already predict very accurate results, yet with the high runtime

highlighted in Tab. 1. Real-time models start from slightly higher error rates when not performing adaptation. Nonetheless,

they can reach (and even surpass) the accuracy of state-of-the-art models either by actively adapting over the sequence itself

(FULL++) or by leveraging federated optimization performed by other clients running on different sequences (FedFULL++).

Figs. 8 and 9 shows examples from Cloudy and Rainy sequences in DrivingStereo [67]. There, state-of-the-art models

[24, 30, 63, 65] achieve slightly lower accuracy, with real-time networks easily outperforming them through adaptation.

Images RAFT-Stereo CREStereo [24] IGEV-Stereo [63] UniMatch [65]

MADNet 2 CoEX [3]

No Adapt. FULL++ FedFULL++ No Adapt. FULL++ FedFULL++

TemporalStereo [72] HITNet [52]

No Adapt. FULL++ FedFULL++ No Adapt. FULL++ FedFULL++

Figure 6. Qualitative results – KITTI dataset [17], Road sequence.

Images RAFT-Stereo CREStereo [24] IGEV-Stereo [63] UniMatch [65]

MADNet 2 CoEX [3]

No Adapt. FULL++ FedFULL++ No Adapt. FULL++ FedFULL++

TemporalStereo [72] HITNet [52]

No Adapt. FULL++ FedFULL++ No Adapt. FULL++ FedFULL++

Figure 7. Qualitative results – KITTI dataset [17], Residential sequence.
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Images RAFT-Stereo CREStereo [24] IGEV-Stereo [63] UniMatch [65]

MADNet 2 CoEX [3]

No Adapt. FULL++ FedFULL++ No Adapt. FULL++ FedFULL++

TemporalStereo [72] HITNet [52]

No Adapt. FULL++ FedFULL++ No Adapt. FULL++ FedFULL++

Figure 8. Qualitative results – DrivingStereo dataset [67], Cloudy sequence.

Images RAFT-Stereo CREStereo [24] IGEV-Stereo [63] UniMatch [65]

MADNet 2 CoEX [3]

No Adapt. FULL++ FedFULL++ No Adapt. FULL++ FedFULL++

TemporalStereo [72] HITNet [52]

No Adapt. FULL++ FedFULL++ No Adapt. FULL++ FedFULL++

Figure 9. Qualitative results – DrivingStereo dataset [67], Rainy sequence.
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Finally, Figs. 10 and 11 reports qualitative examples from Night#2 and Night#4 sequences in DSEC [14]. On this dataset,

state-of-the-art models [24, 30, 63, 65] struggle severely – in particular on Night#2 sequence – because of the sensibly higher

noise in the images due to the poor illumination. Again, online adaptation allows real-time models to improve their accuracy

on-the-fly and to recover details such as traffic signals that were lost by the original model not performing any adaptation.

It is also worthing how the quality of proxy labels used by FULL++ and FedFULL++ is inevitably lower on these scenes,

yielding some artifacts to appear in the predictions by the adapted models – e.g. at the bottom left.

Images RAFT-Stereo CREStereo [24] IGEV-Stereo [63] UniMatch [65]

MADNet 2 CoEX [3]

No Adapt. FULL++ FedFULL++ No Adapt. FULL++ FedFULL++

Figure 10. Qualitative results – DSEC dataset [14], Night#2 sequence.

Images RAFT-Stereo CREStereo [24] IGEV-Stereo [63] UniMatch [65]

MADNet 2 CoEX [3]

No Adapt. FULL++ FedFULL++ No Adapt. FULL++ FedFULL++

Figure 11. Qualitative results – DSEC dataset [14], Night#4 sequence.
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