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Abstract

Self-supervised paradigms for monocular depth estima-
tion are very appealing since they do not require ground
truth annotations at all. Despite the astonishing results
yielded by such methodologies, learning to reason about the
uncertainty of the estimated depth maps is of paramount im-
portance for practical applications, yet uncharted in the lit-
erature. Purposely, we explore for the first time how to esti-
mate the uncertainty for this task and how this affects depth
accuracy, proposing a novel peculiar technique specifically
designed for self-supervised approaches. On the standard
KITTI dataset, we exhaustively assess the performance of
each method with different self-supervised paradigms. Such
evaluation highlights that our proposal i) always improves
depth accuracy significantly and ii) yields state-of-the-art
results concerning uncertainty estimation when training
on sequences and competitive results uniquely deploying
stereo pairs.

1. Introduction
Depth estimation is often pivotal to a variety of high-

level tasks in computer vision, such as autonomous driv-
ing, augmented reality, and more. Although active sensors
such as LiDAR are deployed for some of the applications
mentioned above, estimating depth from standard cameras
is generally preferable due to several advantages. Among
them: the much lower cost of standard imaging devices,
their higher resolution and frame rate allow for more scal-
able and compelling solutions.

In computer vision, depth perception from two [59] or
multiple images [60] has a long history. Nonetheless, only
in the last decade depth estimation from a single image [57]
became an active research topic. On the one hand, this di-
rection is particularly attractive because it overcomes sev-
eral limitations of the traditional multi-view solutions (e.g.,
occlusions, overlapping framed area, and more), enabling
depth perception with any device equipped with a camera.
Unfortunately, it is an extremely challenging task due to the
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Figure 1. How much can we trust self-supervised monocular
depth estimation? From a single input image (top) we estimate
depth (middle) and uncertainty (bottom) maps. Best with colors.

ill-posed nature of the problem.
Deep learning ignited the spread of depth-from-mono

frameworks [13, 38, 15], at the cost of requiring a large
number of image samples annotated with ground truth depth
labels [47, 68] to achieve satisfying results. However,
sourcing annotated depth data is particularly expensive and
cumbersome. Indeed, in contrast to many other supervised
tasks for which offline handmade annotation is tedious,
yet relatively easy, gathering accurate depth labels requires
active (and often expensive) sensors and specific calibra-
tion, making offline annotation hardly achievable otherwise.
Self-supervised [19, 82, 45, 56, 53] or weakly supervised
[76, 65, 72] paradigms, leveraging on image reprojection
and noisy labels respectively, have removed this issue and
yield accuracy close to supervised methods [15], neglect-
ing at all the deployment of additional depth sensors for la-
beling purposes. Among self-supervised paradigms, those
deploying monocular sequences are more challenging since



scale and camera poses are unknown, yet preferred for most
practical applications since they allow gathering of training
data with the same device used to infer depth.

As for other perception strategies, it is essential to find
out failure cases, when occurring, in monocular depth es-
timation networks. For instance, in an autonomous driv-
ing scenario, the erroneous perception of the distance to
pedestrians or other vehicles might have dramatic conse-
quences. Moreover, the ill-posed nature of depth-from-
mono perception task makes this eventuality much more
likely to occur compared to techniques leveraging scene ge-
ometry [59, 60]. In these latter cases, estimating the un-
certainty (or, complementary, the confidence) proved to be
effective for depth-from-stereo, by means of both model-
based [24] and learning-based [55, 30] methods, optical
flow [27], and semantic segmentation [26, 30]. Despite
the steady progress in other related fields, uncertainty es-
timation for self-supervised paradigms remains almost un-
explored or, when faced, not quantitatively evaluated [32].

Whereas concurrent works in this field [20, 72, 65] tar-
geted uniquely depth accuracy, we take a breath on this rush
and focus for the first time, to the best of our knowledge, on
uncertainty estimation for self-supervised monocular depth
estimation networks, showing how this practise enables to
improve depth accuracy as well.

Our main contributions can be summarized as follows:

• A comprehensive evaluation of uncertainty estimation
approaches tailored for the considered task.

• An in-depth investigation of how the self-supervised
training paradigm deployed impacts uncertainty and
depth estimation.

• A new and peculiar Self-Teaching paradigm to model
uncertainty, particularly useful when the pose is un-
known during the training process, always enabling to
improve depth accuracy.

Deploying standard metrics in this field, we provide ex-
haustive experimental results on the KITTI dataset [18].
Figure 1 shows the output of a state-of-the-art monocular
depth estimator network enriched to model uncertainty. We
can notice how our proposal effectively allows to detect
wrong predictions (e.g., in the proximity of the person rid-
ing the bike).

2. Related work
In this section, we review the literature concerning self-

supervised monocular depth estimation and techniques to
estimate uncertainty in deep neural networks.

Self-supervision for mono. The advent of deep learn-
ing, together with the increasing availability of ground
truth depth data, led to the development of frameworks

[38, 40, 74, 15] achieving unpaired accuracy compared to
previous approaches [58, 37, 14]. Nonetheless, the effort to
collect large amounts of labeled images is high. Thus, to
overcome the need for ground truth data, self-supervision
in the form of image reconstruction represents a prevalent
research topic right now. Frameworks leveraging on this
paradigm belong to two (not mutually exclusive) categories,
respectively supervised through monocular sequences or
stereo pairs.

The first family of networks jointly learns to estimate the
depth and relative pose between two images acquired by
a moving camera. Seminal work in this direction is [82],
extended by leveraging on point-cloud alignment [45], dif-
ferentiable DVO [69], optical flow [78, 83, 11, 3], semantic
[66] or scale consistency [5]. One of the shortcomings of
these approaches is represented by moving objects appear-
ing in the training images, addressed in [8, 75] employing
instance segmentation and subsequent motion estimation of
the segmented dynamic objects.

For the second category, pivotal are the works by Garg
et al. [17] and Godard et al. [19]. Other methods im-
proved efficiency [53, 50] to enable deployment on embed-
ded devices, or accuracy by simulating a trinocular setup
[56], jointly learning for semantic [79], using higher reso-
lution [51], GANs [1], sparse inputs from visual odometry
[2] or a teacher-student scheme [52]. Finally, approaches
leveraging both kind of supervisions have been proposed in
[80, 77, 41, 20].

Weak-supervision for mono. A trade-off between self
and full supervision is represented by another family of ap-
proaches leveraging weaker annotations. In this case, labels
can be sourced from synthetic datasets [46], used to train
stereo networks for single view stereo [42] and label dis-
tillation [22] or in alternative to learn depth estimation and
perform domain transfer when dealing with real images [4].

Another source of weak supervision consists of using
noisy annotations obtained employing the raw output of a
LiDAR sensor [35] or model-based algorithms. In this lat-
ter case, the use of conventional stereo algorithms such as
SGM [23] to obtain proxy labels [65, 72], optionally to-
gether with confidence measures [64], allowed improving
self-supervision from stereo pairs. Other works distilled
noisy labels leveraging on structure from motion [32] or di-
rect stereo odometry [76].

Uncertainty estimation. Estimating the uncertainty (or,
complementary, confidence) of cues inferred from images
is of paramount importance for their deployment in real
computer vision applications. This aspect has been widely
explored even before the spread of deep learning, for in-
stance, when dealing with optical flow and stereo matching.
Concerning optical flow, uncertainty estimation methods
belong to two main categories: model-inherent and post-
hoc. The former family [7, 36, 71] estimates uncertainty
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Figure 2. Overview of uncertainty estimation implementations. Respectively a) empirical methods model uncertainty as the variance of
predictions from a subset of all the possible instances of the same network, b) predictive are trained to estimate depth and uncertainty as
mean and variance of a distribution and c) Bayesian methods are approximated [48] by sampling multiple predictive models and summing
single uncertainties with the variance of the depth predictions.

scores based on the internal flow estimation model, i.e.,
energy minimization models, while the latter [43, 33, 34]
analyzing already estimated flow fields. Regarding stereo
vision, confidence estimation has been inferred similarly.
At first, from features extracted by the internal dispar-
ity estimation model, i.e., the cost volume [24], then by
means of deep learning on already estimated disparity maps
[55, 61, 54, 67, 31].

Uncertainty estimation has a long history in neural net-
works as well, starting with Bayesian neural networks
[44, 10, 73]. Different models are sampled from the distri-
bution of weights to estimate mean and variance of the tar-
get distribution in an empirical manner. In [21, 6], sampling
was replaced by variational inference. Additional strategies
to sample from the distribution of weights are bootstrapped
ensembles [39] and Monte Carlo Dropout [16]. A differ-
ent strategy consists of estimating uncertainty in a predic-
tive manner. Purposely, a neural network is trained to infer
the mean and variance of the distribution rather than a sin-
gle value [49]. This strategy is both effective and cheaper
than empirical strategies, since it does not require multiple
forward passes and can be adapted to self-supervised ap-
proaches as shown in [32]. Recent works [29, 30] combined
both in a joint framework.

Finally, Ilg et al. [27] conducted studies about uncer-
tainty modelling for deep optical flow networks. Nonethe-
less, in addition to the different nature of our task (i.e., the
ill-posed monocular depth estimation problem), our work
differs for the supervision paradigm, traditional in their case
and self-supervised in ours.

3. Depth-from-mono and uncertainty

In this section, we introduce how to tackle uncertainty
modelling with self-supervised depth estimation frame-
works. Given a still image I any depth-from-mono frame-
work produces an output map d encoding the depth of the
observed scene. When full supervision is available, to train
such a network we aim at minimizing a loss signal Lfs ob-
tained through a generic function F of inputs estimated d
and ground truth d∗ depth maps.

Lfs = F(d, d∗) (1)

When traditional supervision is not available, it can be re-
placed by self-supervision obtained through image recon-
struction. In this case, the ground truth map d∗ is replaced
by a second image I†. Then, by knowing camera intrinsics
K, K† and the relative camera pose (R|t) between the two
images, a reconstructed image Ĩ is obtained as a function π
of intrinsics, pose, image I† and depth d, enabling to com-
pute a loss signal Lss as a generic F of inputs Ĩ and I.

Lss = F(Ĩ, I) = F(π(I†,K†, R|t,K, d), I) (2)

I and I† can be acquired either by means of a single mov-
ing camera or with a stereo rig. In this latter case, (R|t) is
known beforehand thanks to the stereo calibration param-
eters, while for images acquired by a single camera it is
usually learned jointly to depth, both up to a scale factor.
A popular choice for F is a weighted sum between L1 and
Structured Similarity Index Measure (SSIM) [70]

F(Ĩ, I) = α · 1− SSIM(Ĩ, I)

2
+ (1− α) · |Ĩ − I| (3)

with α commonly set to 0.85 [20]. In case ofK frames used
for supervision, coming for example by joint monocular and
stereo supervision, for each pixel q the minimum among
computed losses allows for robust reprojection [20]

Lss(q) = min
i∈[0..K]

F(Ĩi(q), I(q)) (4)

Traditional networks are deterministic, producing a sin-
gle output typically corresponding to the mean value of the
distribution of all possible outputs p(d∗|I,D), D being a
dataset of images and corresponding depth maps. Estimat-
ing the variance of such distribution allows for modelling
uncertainty on the network outputs, as shown in [28, 29]
and depicted in Figure 2, a) in empirical way, b) by learning
a predictive model or c) combining the two approaches.

First and foremost, we point out that the self-supervision
provided to the network is indirect with respect to its main
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Figure 3. Uncertainty by image flipping. The difference between

the depth d, inferred from image I, and the depth
−→←−
d , from the

flipped image
←−
I , provides a basic form of uncertainty.

task. This means that the network estimates are not opti-
mized with respect to the desired statistical distribution, i.e.
depth d∗, but they are an input parameter of a function (π)
optimized over a different statistical model, i.e. image I.
While this does not represent an issue for empirical meth-
ods, predictive methods like negative log-likelihood mini-
mization can be adapted to this paradigm as done by Klodt
and Vedaldi [32]. Nevertheless, we will show how this so-
lution is sub-optimal when the pose is unknown, i.e. when
π is function of two unknown parameters.

3.1. Uncertainty by image flipping

A simple strategy to estimate uncertainty is inspired by
the post-processing (Post) step proposed by Godard et al.
[19]. Such a refinement consists of estimating two depth
maps d and

←−
d for image I and its horizontally flipped coun-

terpart
←−
I . The refined depth map dr is obtained by averag-

ing d and
−→←−
d , i.e. back-flipped

←−
d . We encode the uncer-

tainty for dr as the difference between the two

uPost = |d−
−→←−
d | (5)

i.e., the variance over a small distribution of outputs (i.e.,
two), as typically done for empirical methods outlined in the
next section. Although this method requires 2× forwards at
test time compared to the raw depth-from-mono model, as
shown in Figure 3, it can be applied seamlessly to any pre-
trained framework without any modification.

3.2. Empirical estimation

This class of methods aims at encoding uncertainty em-
pirically, for instance, by measuring the variance between
a set of all the possible network configurations. It allows
to explain the model uncertainty, namely epistemic [29].
Strategies belonging to this category [27] can be applied to
self-supervised frameworks straightforwardly.

Dropout Sampling (Drop). Early works estimated un-
certainty in neural networks [44] by sampling multiple net-
works from the distribution of weights of a single archi-
tecture. Monte Carlo Dropout [63] represents a popular
method to sample N independent models without requir-
ing multiple and independent trainings. At training time,
connections between layers are randomly dropped with a

probability p to avoid overfitting. At test time, all connec-
tions are kept. By keeping dropout enabled at test time, we
can perform multiple forwards sampling a different network
every time. Empirical mean µ(d) and variance σ2(d) are
computed, as follows, performing multiple (N) inferences:

µ(d) =
1

N

N∑
i=1

di (6)

uDrop = σ2(d) =
1

N

N∑
i=1

(di − µ(d))2 (7)

At test time, using the same number of network parameters,
N× forwards are required.

Bootstrapped Ensemble (Boot). A simple, yet effec-
tive alternative to weights sampling is represented by train-
ing an ensemble of N neural networks [39] randomly ini-
tializing N instances of the same architecture and training
them with bootstrapping, i.e. on random subsets of the en-
tire training set. This strategy produces N specialized mod-
els. Then, similarly to dropout sampling, we can obtain em-
pirical mean µ(d) and variance σ2(d) in order to approxi-
mate the mean and variance of the distribution of depth val-
ues. It requires N× parameters to be stored, results on N×
independent trainings, and a single forward pass for each
stored configuration at test time.

Snapshot Ensemble (Snap). Although the previous
method is compelling, obtaining ensembles of neural net-
works is expensive since it requires carrying out N inde-
pendent training. An alternative solution [25] consists of
obtaining N snapshots out of a single training by leveraging
on cyclic learning rate schedules to obtain C pre-converged
models. Assuming an initial learning rate λ0, we obtain λt
at any training iteration t as a function of the total number
of steps T and cycles C as in [25]

λt =
λ0
2
·

(
cos

(
π · mod (t− 1, dTC e)

dTC e

)
+ 1

)
(8)

Similarly to Boot and Drop, we obtain empirical mean µ(d)
and variance σ2(d) by choosing N out of the C models ob-
tained from a single training procedure.

3.3. Predictive estimation

This category aims at encoding uncertainty by learning a
predictive model. This means that at test time these methods
produce estimates that are function of network parameters
and the input image and thus reason about the current ob-
servations, modelling aleatoric heteroscedastic uncertainty
[29]. Since often learned from real data distribution, for
instance as a function of the distance between the predic-
tions and the ground truth or by maximizing log-likelihood,



these approaches need to be rethought to deal with self-
supervised paradigms.

Learned Reprojection (Repr). To learn a function over
the prediction error employing a classifier is a popular tech-
nique used for both stereo [55, 62] and optical flow [43].
However, given the absence of ground truth labels, we
cannot apply this approach to self-supervised frameworks
seamlessly. Nevertheless, we can drive one output of our
network to mimic the behavior of the self-supervised loss
function used to train it, thus learning ambiguities affect-
ing the paradigm itself (e.g., occlusions, low texture and
more). Indeed, the per-pixel loss signal is supposed to be
high when the estimated depth is wrong. Thus, uncertainty
uRepr is trained adding the following term to Lss

LRepr = β · |uRepr −F(Ĩ, I)| (9)

Since multiple images I† may be used for supervision, i.e.
when combining monocular and stereo, usually for each
pixel q the minimum reprojection signal is considered to
train the network, thus uRepr is trained accordingly

LRepr(q) = β · |uRepr(q)− min
i∈[0..K]

F(Ĩi(q), I(q))| (10)

In our experiments, we set β to 0.1 and stop F gradients
inside LRepr for numerical stability. A similar technique ap-
peared in [9], although not evaluated quantitatively.

Log-Likelihood Maximization (Log). Another popular
strategy [49] consists of training the network to infer mean
and variance of the distribution p(d∗|I,D) of parameters Θ.
The network is trained by log-likelihood maximization (i.e.,
negative log-likelihood minimization)

log p(d∗|w) =
1

N

∑
q

log p(d∗(q)|Θ(I, w)) (11)

w being the network weights. As shown in [27], the predic-
tive distribution can be modelled as Laplacian or Gaussian
respectively in case of L1 or L2 loss computation with re-
spect to d∗. In the former case, this means minimizing the
following loss function

LLog =
|µ(d)− d∗|

σ(d)
+ log σ(d) (12)

with µ(d) and σ(d) outputs of the network encoding mean
and variance of the distribution. The additional logarithmic
term discourages infinite predictions for any pixel. Regard-
ing numerical stability [29], the network is trained to esti-
mate the log-variance in order to avoid zero values of the
variance. As shown by Klodt and Vedaldi [32], in absence
of ground truth d∗ one can model the uncertainty uLog ac-
cording to photometric matching

t+1
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t
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Figure 4. Self-Teaching scheme. A network T is trained in self-
supervised fashion, e.g. on monocular sequences [t − 1, t, t + 1].
A new instance S of the same is trained on dT output of T .

LLog =
mini∈[0..K] F(Ĩi(q), I(q))

uLog
+ log uLog (13)

Recall that F is computed over π according to Equation 2.
Although for stereo supervision this formulation is equiv-
alent to traditional supervision, i.e. π is function of a sin-
gle unknown parameter d, in case of monocular supervision
this formulation jointly explain uncertainty for depth and
pose, both unknown variables in π. We will show how this
approach leads to sub-optimal modelling and how to over-
come this limitation with the next approach.

Self-Teaching (Self ). In order to decouple depth and
pose when modelling uncertainty, we propose to source a
direct form of supervision from the learned model itself.
By training a first network in a self-supervised manner, we
obtain a network instance T producing a noisy distribution
dT . Then, we train a second instance of the same model,
namely S, to mimic the distribution sourced from T . Typ-
ically, teacher-student frameworks [81] applied to monocu-
lar depth estimation [52] deploy a complex architecture to
supervise a more compact one. In contrast, in our approach
the teacher T and the student S share the same architecture
and for this reason we refer to it as Self-Teaching (Self ). By
assuming an L1 loss, we can model for instance negative
log-likelihood minimization as

LSelf =
|µ(dS)− dT |

σ(dS)
+ log σ(dS) (14)

We will show how with this strategy i) we obtain a network
S more accurate than T and ii) in case of monocular su-
pervision, we can decouple depth from pose and achieve a
much more effective uncertainty estimation. Figure 4 sum-
marizes our proposal.

3.4. Bayesian estimation

Finally, in Bayesian deep learning [29], the model uncer-
tainty can be explained by marginalizing over all possible
w rather than choosing a point estimate. According to Neal



[48], an approximate solution can be obtained by sampling
N models and by modelling mean and variance as

p(d∗|I,D) ≈
N∑
i=1

p(d∗|Θ(I, wi)) (15)

If mean and variance are modelled for eachwi sampling, we
can obtain overall mean and variance as reported in [29, 27]

µ(d) =
1

N

N∑
i=1

µi(di) (16)

σ2(d) =
1

N

N∑
i=1

(µi(di)− µ(d))2 + σ2
i (di) (17)

The implementation of this approximation is straightfor-
ward by combining empirical and predictive methods [29,
27]. Purposely, in our experiments we will pick the best
empirical and predictive methods, e.g. combining Boot and
Self (Boot+Self ).

4. Experimental results
In this section, we exhaustively evaluate self-supervised

strategies for joint depth and uncertainty estimation.

4.1. Evaluation protocol, dataset and metrics

At first, we describe all details concerning training and
evaluation to ensure full reproducibility. Source code will
be available at https://github.com/mattpoggi/
mono-uncertainty.

Architecture and training schedule. We choose as
baseline model Monodepth2 [20], thanks to the code made
available and to its possibility to be trained seamlessly
according to monocular, stereo, or both self-supervision
paradigms. In our experiments, we train any variant of this
method following the protocol defined in [20], on batches
of 12 images resized to 192 × 640 for 20 epochs starting
from pre-trained encoders on ImageNet [12]. Moreover, we
always follow the augmentation and training practices de-
scribed in [20]. Finally, to evaluate Post we use the same
weights made publicly available by the authors. Regarding
empirical methods, we set N to 8 and the number of cycles
C for Snap to 20. We randomly extract 25% of the train-
ing set for each independent network in Boot. Dropout is
applied after convolutions in the decoder only. About pre-
dictive models, a single output channel is added in parallel
to depth prediction channel.

Dataset. We compare all the models on the KITTI
dataset [18], made of 61 scenes (about 42K stereo frames)
acquired in driving scenarios. The dataset contains images
at an average resolution of 375×1242 and depth maps from
a calibrated LiDAR sensor. Following standards in the field,

we deploy the Eigen split [13] and set 80 meters as the max-
imum depth. For this purpose, we use the improved ground
truth introduced in [68], much more accurate than the raw
LiDAR data, since our aim is a strict evaluation rather than
a comparison with existing monocular methods. Neverthe-
less, we report results on the raw LiDAR data using Garg’s
crop [17] as well in the supplementary material.

Depth metrics. To assess depth accuracy, we report for
the sake of page limit three out of seven standard metrics1

defined in [13]. Specifically, we report the absolute rela-
tive error (Abs Rel), root mean square error (RMSE), and
the amount of inliers (δ < 1.25). We refer the reader to
[13] or supplementary material for a complete description
of these metrics. They enable a compact evaluation con-
cerning both relative (Abs Rel and δ < 1.25) and absolute
(RMSE) errors. Moreover, we also report the number of
training iterations (#Trn), parameters (#Par), and forwards
(#Fwd) required at testing time to estimate depth. In the
case of monocular supervision, we scale depth as in [82].

Uncertainty metrics. To evaluate how significant the
modelled uncertainties are, we use sparsification plots as in
[27]. Given an error metric ε, we sort all pixels in each
depth map in order of descending uncertainty. Then, we
iteratively extract a subset of pixels (i.e., 2% in our exper-
iments) and compute ε on the remaining to plot a curve,
that is supposed to shrink if the uncertainty properly en-
codes the errors in the depth map. An ideal sparsification
(oracle) is obtained by sorting pixels in descending order of
the ε magnitude. In contrast, a random uncertainty can be
modelled as a constant, giving no information about how to
remove erroneous measurements and, thus, a flat curve. By
plotting the difference between estimated and oracle spar-
sification, we can measure the Area Under the Sparsifica-
tion Error (AUSE, the lower the better). Subtracting esti-
mated sparsification from random one enables computing
the Area Under the Random Gain (AURG, the higher the
better). The former quantifies how close the estimate is to
the oracle uncertainty, the latter how better (or worse, as we
will see in some cases) it is compared to no modelling at all.
We assume Abs Rel, RMSE or δ ≥ 1.25 (since δ < 1.25
defines an accuracy score) as ε.

4.2. Monocular (M) supervision

Depth. Table 1a reports depth accuracy for Monodepth2
variants implementing the different uncertainty estimation
strategies when trained with monocular supervision. We
can notice how, in general, empirical methods fail at im-
proving depth prediction on most metrics, with Drop hav-
ing a large gap from the baseline. On the other hand,
Boot and Snap slightly reduce RMSE. Predictive methods
as well produce worse depth estimates, except the proposed
Self method, which improves all the metrics compared to

1Results for the seven metrics are available as supplementary material

https://github.com/mattpoggi/mono-uncertainty
https://github.com/mattpoggi/mono-uncertainty


Method Sup #Trn #Par #Fwd Abs Rel RMSE δ <1.25
Monodepth2 [20] M 1× 1× 1× 0.090 3.942 0.914
Monodepth2-Post [20] M 1× 1× 2× 0.088 3.841 0.917
Monodepth2-Drop M 1× 1× N× 0.101 4.146 0.892
Monodepth2-Boot M N× N× 1× 0.092 3.821 0.911
Monodepth2-Snap M 1× N× 1× 0.091 3.921 0.912
Monodepth2-Repr M 1× 1× 1× 0.092 3.936 0.912
Monodepth2-Log M 1× 1× 1× 0.091 4.052 0.910
Monodepth2-Self M (1+1)× 1× 1× 0.087 3.826 0.920
Monodepth2-Boot+Log M N× N× 1× 0.092 3.850 0.910
Monodepth2-Boot+Self M (1+N)× N× 1× 0.088 3.799 0.918
Monodepth2-Snap+Log M 1× 1× 1× 0.092 3.961 0.911
Monodepth2-Snap+Self M (1+1)× 1× 1× 0.088 3.832 0.919

a) Depth evaluation
Abs Rel RMSE δ ≥ 1.25

Method AUSE AURG AUSE AURG AUSE AURG
Monodepth2-Post 0.044 0.012 2.864 0.412 0.056 0.022
Monodepth2-Drop 0.065 0.000 2.568 0.944 0.097 0.002
Monodepth2-Boot 0.058 0.001 3.982 -0.743 0.084 -0.001
Monodepth2-Snap 0.059 -0.001 3.979 -0.639 0.083 -0.002
Monodepth2-Repr 0.051 0.008 2.972 0.381 0.069 0.013
Monodepth2-Log 0.039 0.020 2.562 0.916 0.044 0.038
Monodepth2-Self 0.030 0.026 2.009 1.266 0.030 0.045
Monodepth2-Boot+Log 0.038 0.021 2.449 0.820 0.046 0.037
Monodepth2-Boot+Self 0.029 0.028 1.924 1.316 0.028 0.049
Monodepth2-Snap+Log 0.038 0.022 2.385 1.001 0.043 0.039
Monodepth2-Snap+Self 0.031 0.026 2.043 1.230 0.030 0.045

b) Uncertainty evaluation
Table 1. Quantitative results for monocular (M) supervision.
Evaluation on Eigen split [13] with improved ground truth [68].

the baseline, even when post-processed. Regarding the
Bayesian solutions, both Boot and Snap performs worse
when combined with Log, while they are always improved
by the proposed Self method.

Uncertainty. Table 1b resumes performance of mod-
elled uncertainties at reducing errors on the estimated depth
maps. Surprisingly, empirical methods rarely perform bet-
ter than the Post solution. In particular, empirical methods
alone fail at performing better than a random chance, ex-
cept for Drop that, on the other hand, produces much worse
depth maps. Predictive methods perform better, with Log
and Self yielding the best results. Among them, our method
outperforms Log by a notable margin. Combining empirical
and predictive methods is beneficial, often improving over
single choices. In particular, Boot+Self achieves the best
overall results.

Summary. In general Self, combined with empiri-
cal methods, performs better for both depth accuracy and
uncertainty modelling when dealing with M supervision,
thanks to disentanglement between depth and pose. We be-
lieve that empirical methods performance can be ascribed
to depth scale, being unknown during training.

4.3. Stereo (S) supervision

Depth. On Table 2a we show the results of the same
approaches when trained with stereo supervision. Again,
Drop fails to improve depth accuracy, together with Repr
among predictive methods. Boot produces the best im-
provement, in particular in terms of RMSE. Traditional Log
improves this time over the baseline, according to RMSE
and δ < 1.25 metrics while, Self consistently improves

Method Sup #Trn #Par #Fwd Abs Rel RMSE δ <1.25
Monodepth2 [20] S 1× 1× 1× 0.085 3.942 0.912
Monodepth2-Post [20] S 1× 1× 2× 0.084 3.777 0.915
Monodepth2-Drop S 1× 1× N× 0.129 4.908 0.819
Monodepth2-Boot S N× N× 1× 0.085 3.772 0.914
Monodepth2-Snap S 1× N× 1× 0.085 3.849 0.912
Monodepth2-Repr S 1× 1× 1× 0.085 3.873 0.913
Monodepth2-Log S 1× 1× 1× 0.085 3.860 0.915
Monodepth2-Self S (1+1)× 1× 1× 0.084 3.835 0.915
Monodepth2-Boot+Log S N× N× 1× 0.085 3.777 0.913
Monodepth2-Boot+Self S (1+N)× N× 1× 0.085 3.793 0.914
Monodepth2-Snap+Log S 1× 1× 1× 0.083 3.833 0.914
Monodepth2-Snap+Self S (1+1)× 1× 1× 0.086 3.859 0.912

a) Depth evaluation
Abs Rel RMSE δ ≥ 1.25

Method AUSE AURG AUSE AURG AUSE AURG
Monodepth2-Post 0.036 0.020 2.523 0.736 0.044 0.034
Monodepth2-Drop 0.103 -0.029 6.163 -2.169 0.231 -0.080
Monodepth2-Boot 0.028 0.029 2.291 0.964 0.031 0.048
Monodepth2-Snap 0.028 0.029 2.252 1.077 0.030 0.051
Monodepth2-Repr 0.040 0.017 2.275 1.074 0.050 0.030
Monodepth2-Log 0.022 0.036 0.938 2.402 0.018 0.061
Monodepth2-Self 0.022 0.035 1.679 1.642 0.022 0.056
Monodepth2-Boot+Log 0.020 0.038 0.807 2.455 0.018 0.063
Monodepth2-Boot+Self 0.023 0.035 1.646 1.628 0.021 0.058
Monodepth2-Snap+Log 0.021 0.037 0.891 2.426 0.018 0.061
Monodepth2-Snap+Self 0.023 0.035 1.710 1.623 0.023 0.058

b) Uncertainty evaluation
Table 2. Quantitative results for stereo (S) supervision. Evalua-
tion on Eigen split [13] with improved ground truth [68].

the baseline on all metrics, although it does not outperform
Post, which requires two forward passes.

Uncertainty. Table 2b summarizes the effectiveness of
modelled uncertainties. This time, only Drop performs
worse than Post achieving negative AURG, thus being detri-
mental at sparsification, while other empirical methods
achieve much better results. In these experiments, thanks
to the known pose of the stereo setup, Log deals only with
depth uncertainty and thus performs extremely well. Self,
although allowing for more accurate depth as reported in
Table 2a, ranks second this time. Considering Bayesian im-
plementations, again, both Boot and Snap are always im-
proved. Conversely, compared to the M case, Log this time
consistently outperforms Self in any Bayesian formulation.

Summary. When the pose is known, the gap between
Log and Self concerning depth accuracy is minor, with Self
performing better when modelling only predictive uncer-
tainty and Log slightly better with Bayesian formulations.
For uncertainty estimation, Log consistently performs bet-
ter. The behavior of empirical methods alone confirms our
findings from the previous experiments: by knowing the
scale, Boot and Snap model uncertainty much better. In
contrast, Drop fails for this purpose.

4.4. Monocular+Stereo (MS) supervision

Depth. Table 3a reports the behavior of depth accuracy
when monocular and stereo supervisions are combined. In
this case, only Self consistently outperforms the baseline
and is competitive with Post, which still requires two for-
ward passes. Among empirical methods, Boot is the most
effective. Regarding Bayesian solutions, those using Self



Method Sup #Trn #Par #Fwd Abs Rel RMSE δ <1.25
Monodepth2 [20] MS 1× 1× 1× 0.084 3.739 0.918
Monodepth2-Post [20] MS 1× 1× 2× 0.082 3.666 0.919
Monodepth2-Drop MS 1× 1× N× 0.172 5.885 0.679
Monodepth2-Boot MS N× N× 1× 0.086 3.787 0.910
Monodepth2-Snap MS 1× N× 1× 0.085 3.806 0.914
Monodepth2-Repr MS 1× 1× 1× 0.084 3.828 0.913
Monodepth2-Log MS 1× 1× 1× 0.083 3.790 0.916
Monodepth2-Self MS (1+1)× 1× 1× 0.083 3.682 0.919
Monodepth2-Boot+Log MS N× N× 1× 0.086 3.771 0.911
Monodepth2-Boot+Self MS (1+N)× N× 1× 0.085 3.704 0.915
Monodepth2-Snap+Log MS 1× 1× 1× 0.084 3.828 0.914
Monodepth2-Snap+Self MS (1+1)× 1× 1× 0.085 3.715 0.916

a) Depth evaluation
Abs Rel RMSE δ ≥ 1.25

Method AUSE AURG AUSE AURG AUSE AURG
Monodepth2-Post 0.036 0.018 2.498 0.655 0.044 0.031
Monodepth2-Drop 0.103 -0.027 7.114 -2.580 0.303 -0.081
Monodepth2-Boot 0.028 0.030 2.269 0.985 0.034 0.049
Monodepth2-Snap 0.029 0.028 2.245 1.029 0.033 0.047
Monodepth2-Repr 0.046 0.010 2.662 0.635 0.062 0.018
Monodepth2-Log 0.028 0.029 1.714 1.562 0.028 0.050
Monodepth2-Self 0.022 0.033 1.654 1.515 0.023 0.052
Monodepth2-Boot+Log 0.030 0.028 1.962 1.282 0.032 0.051
Monodepth2-Boot+Self 0.023 0.033 1.688 1.494 0.023 0.056
Monodepth2-Snap+Log 0.030 0.027 2.032 1.272 0.032 0.048
Monodepth2-Snap+Self 0.023 0.034 1.684 1.510 0.023 0.055

b) Uncertainty evaluation
Table 3. Quantitative results for monocular+stereo (MS) super-
vision. Evaluation on Eigen split [13] with improved ground truth
[68].

are, in general, more accurate on most metrics, yet surpris-
ingly worse than Self alone.

Uncertainty. Table 3b shows the performance of the
considered uncertainties. The behavior of all variants is
similar to the one observed with stereo supervision, except
for Log and Self. We can notice that Self outperforms Log,
similarly to what observed with M supervision. It confirms
that pose estimation drives Log to worse uncertainty esti-
mation, while Self models are much better thanks to the
training on proxy labels produced by the Teacher network.
Concerning Bayesian solutions, in general, Boot and Snap
are improved when combined with both Log and Self, with
Self combinations typically better than their Log counter-
parts and equivalent to standalone Self.

Summary. The evaluation with monocular and stereo
supervision confirms that when the pose is estimated along-
side with depth, Self proves to be a better solution com-
pared to Log and, in general, other approaches to model
uncertainty. Finally, empirical methods alone behave as
for experiments with stereo supervision, confirming that
the knowledge of the scale during training is crucial to the
proper behavior of Drop, Boot and Snap.

4.5. Sparsification curves

In order to further outline our findings, we report in Fig-
ure 5 the RMSE sparsification error curves, averaged over
the test set, when training with M, S or MS supervision.
The plots show that methods leveraging on Self (blue) are
the best to model uncertainty when dealing with pose esti-
mation, i.e. M and MS, while those using Log (green) are
better when training on S. We report curves for Abs Rel and

Figure 5. Sparsification Error curves. From left to right, average
RMSE with M, S and MS supervisions. Best viewed with colors.

δ ≥ 1.25 in the supplementary material.

4.6. Supplementary material

For the sake of the pages limit, we report more details
about the experiments shown so far in the supplementary
material. Specifically, i) complete depth evaluation with all
seven metrics defined in [13], ii) depth and uncertainty eval-
uation with reduced depth range to 50 meters, iii) evaluation
assuming the raw LiDAR data as ground truth, for compli-
ancy with previous works [20] and iv) sparsification curves
for all metrics. We also provide additional qualitative re-
sults in the form of images and a video sequence, available
at www.youtube.com/watch?v=bxVPXqf4zt4.

5. Conclusion

In this paper, we have thoroughly investigated for
the first time in literature uncertainty modelling in self-
supervised monocular depth estimation. We have reviewed
and evaluated existing techniques, as well as introduced a
novel Self-Teaching (Self ) paradigm. We have considered
up to 11 strategies to estimate the uncertainty on predictions
of a depth-from-mono network trained in a self-supervised
manner. Our experiments highlight how different supervi-
sion strategies lead to different winners among the consid-
ered methods. In particular, among empirical methods, only
Dropout sampling performs well when the scale is unknown
during training (M), while it is the only one failing when
scale is known (S, MS). Empirical methods are affected
by pose estimation, for which log-likelihood maximization
gives sub-optimal results when the pose is unknown (M,
MS). In these latter cases, potentially the most appealing
for practical applications, the proposed Self technique re-
sults in the best strategy to model uncertainty. Moreover,
uncertainty estimation also improves depth accuracy con-
sistently, with any training paradigm.
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