
Learning optical flow from still images –

Supplementary material

Filippo Aleotti∗ Matteo Poggi∗ Stefano Mattoccia

Department of Computer Science and Engineering (DISI)

University of Bologna, Italy

{filippo.aleotti2, m.poggi, stefano.mattoccia }@unibo.it

This document reports additional details concerning CVPR 2021 paper – “Learning optical flow from still images”. Sec-

tion 1 shows a further comparison between RAFT models trained on depthstilled data with models trained on real images

with proxy labels obtained by a hand-made flow algorithm, while most of the remaining material concerns visualizations of

the data generated by our depthstillation pipeline (Sections 2-6), as well as qualitative results of RAFT models on standard

datasets (Sintel in Section 7, KITTI 2012 and 2015 in Section 8) and videos freely available online (Section 9).

1. Comparison with proxy-supervision from hand-crafted optical flow algorithms

As a further experiment, we compare the accuracy yield by depthstilled labels with respect to what achieved by generating

proxy flow labels with a hand-crafted algorithm, although this latter requires image pairs – as well for training self-supervised

methods. To this aim, we select RICFlow [1] as a competitor and we generate two training datasets, namely ricDAVIS and

ricKITTI, respectively counterparts of dDAVIS and dKITTI used for the experiments in Tables 7 and 8 in the main paper.

As shown in the following tables, the RAFT models trained on depthstilled data always outperform the others. Thus, real

images and imperfect labels obtained with RICFlow seem worse than imperfect images and depthstilled labels for training.

Model Dataset KITTI12 KITTI15

EPE Fl EPE Fl

(A) RAFT ricDAVIS 2.72 11.52 6.21 20.61

(B) RAFT dDAVIS 1.78 6.85 3.80 13.22

Model Dataset KITTI12 KITTI15

EPE Fl EPE Fl

(A) RAFT ricKITTI 2.34 8.50 6.02 18.51

(B) RAFT dKITTI 1.76 5.91 4.01 13.35

2. Depth is crucial for good Depthstillation

Given an input image I0, we aim to generate a ground-truth optical flow map F0→1 and a new image I1. Knowing the

depth D0 plays a crucial role to obtain a realistic flow field.

I0 F0→1 I1

∗Joint first authorship.

1



It is worth observing that, without a depth estimator, we could assume a constant depth for each image pixel generating

planar motions. However, this would limit considerably the variety of dense flow fields we can generate. Consequently,

optical flow networks trained on such data would yield low accuracy, as discussed in the submitted manuscript.

I0 F0→1 I1

The reader might suppose that avoiding depth estimation, yet segmenting objects in the scene could be enough to obtain

adequate training data. For instance, by assuming a constant depth and extracting the bird from the previous example, we

could apply two different virtual motions to pixels belonging to the background and the foreground.

I0 F0→1 I1

Although segmenting the image allows to model more complex motions with respect to not using either depth or segmen-

tation, a RAFT model trained on data generated by knowing depth achieve much lower error on all metrics and datasets, as

shown in the following tables, either without (left) or with (right) hole filling.

Depth Hole Moving Sintel C. Sintel F. KITTI 12 KITTI 15

est. fill. obj. EPE Fl EPE Fl EPE Fl EPE Fl

✓ ✗ ✗ 2.52 7.17 3.72 11.04 2.02 7.53 4.84 16.26

✗ ✗ ✓ 3.02 8.68 4.19 12.48 3.54 11.24 6.59 19.61

Depth Hole Moving Sintel C. Sintel F. KITTI 12 KITTI 15

est. fill. obj. EPE Fl EPE Fl EPE Fl EPE Fl

✓ ✓ ✗ 2.63 7.00 3.90 11.31 1.82 6.62 3.81 12.42

✗ ✓ ✓ 2.73 7.63 4.01 11.64 2.14 8.63 4.66 16.09

2



3. Components impacting view synthesis

We discuss the impact of the design choices introduced in our pipeline on the generated view I1.

Depth sharpening. Unfortunately, edges in monocular predictions are often blurred (A), causing flying pixel artefacts

after warping, as those isolate pixels visible in I1 (B) on the dis-occlusion between the bird and the background.

I0 (A) (B)

To alleviate this problem, we apply the bilateral filter [3] to D0, obtaining a depth map (C) with sharper edges that generates

an image I1, displayed in (D), where most of the flying pixels have been removed.

I0 (C) (D)

Collisions and holes. After applying the virtual camera motion, multiple pixels could reproject at the same coordinates

in I1. When these collisions occur, we assume that the closer 3D point occludes all the others. Thus, we easily solve this

ambiguity by assigning to the pixel in I1 the RGB value of the pixel with the lowest depth. We also keep a trace of colliding

pixels for following computational steps, as we will see later. In particular, we build a binary mask M, showed in (E),

assigning 1 to all pixels for which collisions occur (i.e., multiple pixels from I0 are reprojected there), 0 otherwise.

3



Another issue occurring after forward warping is the presence of holes or stretching artefacts. For these pixels, we need

to inpaint an RGB value to make the overall image more realistic. To this aim, we build a binary mask H, showed in (F), in

which we assign 1 to pixels in I1 for which an RGB value has been retrieved from I0, 0 otherwise. This mask is paramount

since it allows to determine which pixels have to be inpainted after warping: each pixel in I1 is inpainted with [5] if labeled

with 0 in H. At the end of the inpainting, we obtain (G), in which holes have been filled.

(E) (F) (G)

Bleeding artefacts. However, it is worth noticing that some regions in (G), such as the bird’s wing on the right part of the

image, are affected by different kinds of artefacts. For instance, due to the camera motion, some pixels of the bird in I1 are

not filled with RGB values of the bird itself from I0, but with background ones. To obtain more realistic images, we need to

track such pixels and then inpaint them as we do for holes. Unfortunately, we are not able to trace them in H. However, we

can observe that many of these artefacts have a 0 value in M (E), while being surrounded by pixels with 1 value. We leverage

this behavior to detect these artefacts: by dilating M we obtain M′ (H), on which several of these 0 values become 1. Now,

we can compare M (E) with M′ (H) to detect artefacts, in particular by looking for pixels that switched from 0 to 1. We

store this information in a new mask, called P and displayed in (I), in which all the pixels with the same value in M and M′

are marked with 1, 0 otherwise. Finally, we can update H including all the invalid pixels found in P by simply multiplying

the two, thus obtaining our final mask H′ depicted in (J).

(H) (I) (J)

4



By using H′ (J) instead of H during the inpainting phase, we can obtain more realistic images, as in (K), removing most

of the bleeding artefacts.

(D) (J) (K)

4. Components impacting flow generation

We now discuss the key components impacting the flow vectors angle and magnitude during the depthstillation process.

Camera intrinsics. Since any single picture is suitable for our method, K is most of the times unknown. However, our

purpose is not to accurately reconstruct the 3D scene (that would be barely feasible with a monocular depth network, even

knowing K). Thus, we can assume a plausible intrinsics matrix K, plausible because we want to avoid unrealistic settings

(i.e., points that are mapped infinitely far away, behind the camera reference frame, etc.). By playing on the focal length, we

increase/decrease the depth scale and generate a smaller or larger magnitude of the flow vectors.

Camera intrinsics K as defined in the main paper

Different camera intrinsics K with focal length multiplied by 2

5



Virtual camera motion. Sampling different random motion parameters (R|t) impacts, of course, on both the angle and

magnitude of the generated optical flow field.

Randomly generated motion #1

Randomly generated motion #2

Moving objects. Segmenting objects and applying different camera motions to them allows for further increase the variety

of the generated flow fields.

Randomly generated motion #1

Randomly generated motion #1 + randomly generated motion #2 applied to bird only

6



5. Traditional vs learned inpainting

Finally, we show the impact of adopting more advanced inpainting strategies to fill holes in I1. Most recent inpainting

methods are based on deep learning [2] and, of course, require additional supervision that would add complexity to our

pipeline, although not introducing sensible improvements on the quality of I1.

We show the outcome of some of these strategies, sorted by increasing complexity. From left to right, the results of 1)

background texture filling [6], that consists of filling invalid pixels with RGB values taken from another image after color

alignment, 2) the traditional image inpainting [5] used in our main paper, 3) the predictions of a GAN model [2] pre-trained

for image inpainting and 4) the prediction of a Fourier Features Network [4], trained directly on the image itself and thus

optimized for each single I1. For the latter [4], we train a compact MLP to predict RGB values given as input the 2D

coordinates, remapped into Fourier Features, of valid pixels in I1. Then, we use the trained model to infer the RGB for

invalid pixels in I1. Notice that, in our pipeline, this setting would require a standalone training over each image in the

dataset, dramatically increasing the complexity of our solution.

Background filling [6] Traditional inpainting [5] GAN [2] Fourier Features Network [4]

These qualitative examples highlight that background filling, although useful when generating stereo images [6], is not

enough in the case of 2D motions. Moreover, large occluded regions result challenging to fill even for deep learning models

[2]. The Fourier Features Network [4] results in more visually pleasant images, yet turns out to be prohibitive in terms of

time required to depthstill thousand of images. Hence, in our pipeline, we rely on [5] since it provides comparable results

with minimum complexity.

6. Qualitative examples – dCOCO

To conclude our analysis on the depthstillation pipeline, we show some qualitative examples from dCOCO. We first show

images generated without taking into account depth, i.e. assuming a constant distance from the camera enabling only planar

motions and rotations. We can notice how this produces a meager variety of flow vectors on a single frame.

7



Leveraging depth, we can model more complex flow fields, leading to much more variegate vectors occurring on the same

scene. As shown in the submitted paper, optical flow networks trained on these images are dramatically more accurate.

Finally, instance segmentation allows for extracting objects from the scene and simulate independent motions. This

additional strategy results in even more variegate flow fields, although increasing the accuracy of optical flow networks

marginally compared to the previous case.

7. Qualitative results – RAFT on synthetic benchmarks

We now report some qualitative results on four image pairs taken from the Sintel-final dataset. For each, we report on

two rows the reference frame (top) and the ground-truth flow (bottom), followed in order by optical flow maps estimated by

RAFT when trained on Ch, Ch→Th and Ch→Th→dCOCO (top) and their corresponding error maps (bottom), with EPE

and > 3 metrics overimposed.

8



Sequence “bandage 2”, frames 24/25

EPE: 0.48 >3: 1.76% EPE: 0.33 >3: 2.10% EPE: 0.76 >3: 2.53%

Sequence “alley 1”, frames 6/7

EPE: 0.39 >3: 2.59% EPE: 0.23 >3: 1.30% EPE: 0.64 >3: 1.35%

Sequence “bamboo 1”, frames 17/18

EPE: 0.54 >3: 1.93% EPE: 0.38 >3: 1.86% EPE: 0.78 >3: 2.19%

Sequence “market 5”, frames 7/8

EPE: 11.58 >3: 47.31% EPE: 8.69 >3: 31.53% EPE: 6.50 >3: 29.57%

Sequence “market 5”, frames 32/33

EPE: 2.16 >3: 10.46% EPE: 1.32 >3: 3.98% EPE: 1.65 >3: 4.75%

9



8. Qualitative results – RAFT on real benchmarks

We also report some qualitative results on eight image pairs taken from KITTI 2012 and KITTI 2015 datasets. For each,

we report on two rows the reference frame (top) and the ground-truth flow (bottom), followed in order by optical flow maps

estimated by RAFT when trained on Ch, Ch→Th and dCOCO (top) and their corresponding error maps (bottom), with EPE

and Fl metrics overimposed.

8.1. KITTI 2012

000012

EPE: 4.74 Fl: 36.81% EPE: 2.28 Fl: 12.08% EPE: 1.88 Fl: 6.90%

000027

EPE: 5.33 Fl: 34.28% EPE: 3.67 Fl: 11.46% EPE: 4.65 Fl: 9.62%

000040

EPE: 5.04 Fl: 30.40% EPE: 1.75 Fl: 6.21% EPE: 1.43 Fl: 3.94%

000104

EPE: 4.44 Fl: 33.39% EPE: 2.43 Fl: 10.57% EPE: 1.67 Fl: 7.70%

000141

EPE: 7.59 Fl: 49.55% EPE: 3.82 Fl: 20.66% EPE: 1.75 Fl: 11.12%

10



8.2. KITTI 2015

000007

EPE: 3.66 Fl: 37.85% EPE: 1.11 Fl: 7.20% EPE: 1.08 Fl: 4.49%

000091

EPE: 16.41 Fl: 30.96% EPE: 6.99 Fl: 21.62% EPE: 7.14 Fl: 12.43%

000171

EPE: 2.70 Fl: 25.55% EPE: 0.93 Fl: 5.06% EPE: 0.98 Fl: 3.12%

000175

EPE: 16.09 Fl: 57.34% EPE: 13.99 Fl: 34.84% EPE: 6.11 Fl: 20.85%

000199

EPE: 5.40 Fl: 54.74% EPE: 1.98 Fl: 17.89% EPE: 1.56 Fl: 9.85%

11



9. Qualitative results – freely available web videos

Finally, since we primarly aim at generalization to unseed real videos, we show qualitative results produced by RAFT

trained on Ch→Th→dCOCO on web videos freely available on the pexels.com portal. We report input images I0 and I1,

followed by estimated optical flow F0→1.

References

[1] Yinlin Hu, Yunsong Li, and Rui Song. Robust interpolation of correspondences for large displacement optical flow. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017. 1

[2] Yuqing Ma, Xianglong Liu, Shihao Bai, Lei Wang, Dailan He, and Aishan Liu. Coarse-to-fine image inpainting via region-wise

convolutions and non-local correlation. In IJCAI, 2019. 7

[3] Ziyang Ma, Kaiming He, Yichen Wei, Jian Sun, and Enhua Wu. Constant time weighted median filtering for stereo matching and

beyond. In Proceedings of the IEEE International Conference on Computer Vision, pages 49–56, 2013. 3

[4] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi,

Jonathan T. Barron, and Ren Ng. Fourier features let networks learn high frequency functions in low dimensional domains. 2020. 7

[5] Alexandru Telea. An image inpainting technique based on the fast marching method. Journal of graphics tools, 9(1):23–34, 2004. 4,

7

[6] Jamie Watson, Oisin Mac Aodha, Daniyar Turmukhambetov, Gabriel J. Brostow, and Michael Firman. Learning stereo from single

images. In European Conference on Computer Vision (ECCV), 2020. 7

12


